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Two Simple Algorithms for Discrete 
Rational Approximation 
By I. Barrodale and J. C. Mason 

Abstract. This paper reports on computational experience with algorithms due to Loeb 
and Appel for rational approximation on discrete point sets. Following a brief review of 
the linear discrete approximation problem, the two rational algorithms are stated in a 
general setting. Finally, several numerical examples of applications to 1l, 12, and 14 approxi- 
mation are supplied and discussed. 

1. Introduction. Rational functions can often provide very satisfactory approxi- 
mations to discrete data. However, as with most other nonlinear approximating 
functions, effective algorithms that produce best discrete rational approximations are 
few in number and are often complicated or time-consuming. The purpose of this 
paper is to give further exposure to two rational algorithms due to Loeb and Appel, 
to extend their applicability to each of the three norms 11, 12, and I., and to test 
their effectiveness on a variety of problems. Both methods are simple in the sense 
that they employ only a linear approximation algorithm and possibly a straight- 
forward iteration. 

For the sake of completeness, the remainder of this introductory section consists 
of some remarks on the general problem of best approximation on a discrete point set. 

Given a set X = {xl, x2, * * *, xv} of real numbers and a function f(x) defined 
on X, we choose an approximating function F(A, x) and select a particular form 
F(A*, x) which approximates f(x) satisfactorily on X, according to some criterion. 
Here, A = {al, a2, * . , an} is a set of free parameters, and F(A, x) is a linear ap- 
proximating function only if it depends linearly upon these parameters. Thus, a 
rational function F(A, x) = (a, + a2x)/(1 + a3x) is nonlinear, and the most general 
linear function is F(A, x) = E-, ajoi(x), where the 47(x)'s are given linearly in- 
dependent functions defined on X. F(A*, x) is called a best approximation in a 
norm I I 1I1I if, for all choices of A, I If(x) - F(A*, x)I I <| IIf(x) - F(A, x)I 1. The 
three norms used in practice are: 

N 

I,: llw(x)[f(x) - F(A, x)]JII = E w(xi) jf(xi)- F(A, xi)j, 
i-1 

( TV ) ~~~~~~~1/2 
12: jjw(x)[f(x) - F(A, X)I112 = w(xi)[f(xi)- F(A, xi)1 2 

lo: j1w(x)[f(x) - F(A, x)]|I| = max w(xj) If(xi) - F(A, xi)j, 
1 Si9N 

where {w(xi)} is a prescribed set of positive weights. 
In the linear case best approximations exist in all three norms, but only 12 ap- 
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proximations are necessarily unique. The actual determination of best 1l and lo 
linear approximations may be effected by linear programming (see Barrodale and 
Young [3]), while 12 approximations may be found by solving the relevant normal 
equations. If the discrete data is affected by noise then the appropriate choice of 
norm depends upon the distribution of these random errors. In practice one chooses 
the l., 12, or 11 norm, respectively, according as the errors are very small relative 
to the error of approximation, normally distributed, or subject to wild points. (Rice 
and White [7] give evidence which supports this viewpoint.) 

Progress towards developing algorithms for nonlinear approximation has been 
slow: much information concerning the state of the art to date is contained in Rice [6]. 
The theory of best nonlinear approximation on intervals is more advanced than 
that for discrete sets, where existence cannot even be guaranteed for mildly nonlinear 
functions. Rational approximation appears to be the best understood nonlinear 
approximation problem, even though the examples presented in this paper of rational 
1, approximations are among the first to appear in the literature from this norm. 

2. The Loeb Algorithm. Suppose that a generalized rational approximation is 
required to f(x) of the form 

F(A x) = Pm(X) = P000(x) + pAWb(X) + .+ pmcm(x) 
Q.(x) 

- 

q00(x) + ql11(x) + * + qan r,(x) 

where {43(x)} and { /t(x)} are both linearly independent sets of given functions. 
The parameter set A = {po, ... * pm qo0 , * * , q.} can be normalized by, for example, 
setting q0 = 1. Then the problem of determining a best approximation in a given 
norm is to choose A* which minimizes 11f(x) - Pm(x)/Q,,(x)I . 

The Loeb algorithm is an iterative procedure which consists of minimizing at 
the kth stage the 'quantity 

(A) Q|k| 
) [fQ(k1 I 

by appropriately choosing the coefficients' and q(b). Here, f f(x), Q(k) _ )(x), 
p(k) - 

p 
M (x), and 1/Q(k-)' is regarded as a known weight function. We fix q0 = 1 

and normally start the iteration by putting Q(O) = 1. Then the minimization of (A) 
is a linear approximation problem which can be tackled in any of the norms 11, 12, 

or I.,, by the techniques referred to in Section 1. The iteration is continued until 
the computed parameters of best approximation in (A) converge to within some 
prescribed tolerance. 

This algorithm was proposed by Loeb [4] for the I0, norm and by Wittmeyer [8] 
for the 12 norm. Our own experience in using the algorithm, some of which is sum- 
marized in Section 5, suggests that it is often a satisfactory technique for producing 
good rational approximations. However, we have encountered examples in all three 
norms where the procedure has not converged even after a large number of iterations. 
More seriously, we have also discovered examples in each norm where the algorithm 
does converge, but not to a best approximation. 

Wittmeyer [8] states that if the 12 algorithm converges, then it necessarily converges 
to a best approximation. This claim is untrue: indeed, in general there is almost 
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no chance that Loeb's algorithm will converge to a best least-squares approximation, 
unless there is no error in the approximation! 

We are indebted to Mr. M. J. D. Powell for this last remark which can be justified 
as follows. Loeb's algorithm has converged when p(k1)/Q(k-) = p(k)/Q(k), which 
in the 12 norm requires that the partial derivatives of the square of expression (A) 
with respect to each pi and q, be all zero at the approximation P'k'/Q'k'. But these 
conditions on P(k)/Q(k) are different from the system of equations which is generated 
by the normal equations for the square of I lf(x) - P,,(x)/Qn(x)112, although this 
difference diminishes as the error of approximation decreases. Thus if Loeb's algorithm 
converges, it is likely to reach a point that is not a solution to the best least-squares 
rational approximation problem. 

3. Approximation by (P/Q)r. Any algorithm that produces discrete best approx- 
imations by functions of the form G(A, x) can be used to compute near-best ap- 
proximations by F(A, x) = (G(A, x))r. The prescribed quantity r is usually a positive 
integer, and the resulting approximations are "near-best" in the sense of the analysis 
below. 

In general, we wish to minimize I lf(x) - F(A, x)J I = I l(g(x))7 - (G(A, x))rl 1, 
where g(x) = (f(x))"1'. Suppose that for each point x E X we define e(x) -f(x) - 

F(A, x), then 

(B) G(A, x) = [(g(X)), - C(X)]11, = g(X)[_ -C(X)lf(X)]lr 

= g(x)[1 - e(x)/rf(x)] + 0 ) 

If e(x) is small compared to f(x) on the discrete point set X, then we may neglect 
second order terms in (B) and write 

g(x) - G(A, x) 
I 

- ) -O), r f (x) 

thus, 

I If(x) - F(A, x) I = I I w(x)[g(x) - G(A, x)]|l, 

where w(x) = jr(f(x)/g(x))I. 
Hence, the minimum of IIf(x) - F(A, x)JJ can be found approximately by 

solving the known problem of minimizing llw(x)[g(x) - G(A, x)]11. 
In particular, approximations of the form 

F(A, x) = (Pm(X)"r _ (pn)(X) + P10'k(X) + *. 
+ Pmm(X)>r 

\Qn(X)/ qo 60(x) + ql V/1 (x) + ***+ qn.nX) 
may be determined by applying the Loeb algorithm to 

Pm(X)] 
||wkx) [(ikx)) Q (x)j 

where w(x) = Jr(f(x))1-1'J. 

4. The Appel Algorithm. Clearly, a rational function with a fixed denominator 
is just a linear approximating function. More interestingly, Appel [1] has shown 
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that if the numerator is fixed but the denominator varies, then a rational approxi- 
mation can be computed by using a weighted linear algorithm. This is a nonitera- 
tive process which produces a near-best approximation. Such a form of rational 
approximation is particularly appropriate for fitting data which tends rapidly to 
zero as x tends to infinity. 

We are concerned with functions of the form 

F(A, x) = Prn(x)/(qoqo(x) + q10/(x) + * + q.41.(x))7, 

where the parameter set is A = {q0, q1, * * *, qj}, the prescribed quantity r is usually 
a positive integer, and Pm(x) is a given fixed function. Normally, Pm(x) is chosen 
to ensure that Pm(x)/f(x) is positive for all x C X. Appel's analysis, which is very 
similar to that of Section 3, was given in [1] for the 12 norm, but it extends trivially to 
any other discrete norm. 

For any x E X we define 

g(x) = (Pm(X)/t(x))l/, 

G(A, x) = (Pm(x)/F(A, X))'/r = q0t0(x) + qlqll(x) + * + q"ql.(x) 

and e(x) = f(x) - F(A, x). Then, clearly 

('1 E(x)1 COr F () ~ 2 
(C) G(A, g(x= ) - - = g(x)I + -f- + 0 f(x)j f(x)J I x) 

If E(x) is small compared to f(x) on the discrete point set X, then we may neglect 
second order terms in (C) and write 

1 g(x) 
g(x) - G(A, x) = -- - ) 6(X) r f(x) 

thus, 

I Jf(x) - F(A, x) I I = I I w(x)[g(x) - G(A, x)]II, 

where w(x) = jr(f(x)/g(x))j. 
Hence, the minimum of I If(x) - F(A, x)I I can be found approximately by solving 

the known problem of minimizing 

(D) I I w(x)[g(x) - G(A, x)]1I. 

Since G(A, x) is a linear approximating function, the original problem is thus solved 
approximately by one application of a linear algorithm. 

5. Numerical Results. This section contains complete details of several rational 
approximations obtained by the methods described above. Tables IA and 1B show 
approximations in each of the norms 11, 12, and I., to four smooth functions. Three 
different rational approximating functions were used and Loeb's algorithm was 
employed. Tables 2A and 2B record our attempts to approximate six functions 
whose behavior might be described as "kinky". The analytic expressions for these 
six functions show that they are either discontinuous, or they have rapidly changing 
derivatives, at some points in the intervals containing their abscissae. Loeb's algo- 
rithm, all three norms, and the approximating function P2(x)/Q2(x), were used 
here. Table 3 is a collection of 12 approximations by P2(x)/Q2(x) to various standard 
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TABLE~ lB. Smooth data: Parameters-,and error measures. 

Loeb's algorithm Define = C = f(xi) - F(A,xi) 

1 norm 

Function A-1 A-2 A-3 A-4 
1 

Ecil (5.5)105 (1.1)102 (1.3)105 (4.4)10- 

P0 1.00006 0.08883 1.00000 0.99951 

P1 0.50876 0.67740 1.04287 0.06945 

P2 0.08603 -0.21967 0.03081 

P3 0.00706 

-0.49103 -0.66249 1.04569 0.73146 

q2 0.07780 0.01646 0.77072 0.26573 

q3 0.24200 0.04560 

q4 0.07890 0.01427 

Q2 norm 

Function A-1 A-2 A-3 A-4 

{N Ze2s (6.3)10 (1.4)10 (1.7)10 5 (6.9)10 N i 

P0 1.00006 0.06042 1.00000 0.99979 

P1 0.50900 0.72913 1.06087 0.08275 

P2 0.08609 -0.23294 0.03265 

P3 0.00764 

q t -e0.49077 -0.64277 1.06292 0.74635 

q2 ?0.07761 0.00391 0.77504 0.27460 

q3 0.24694 0.05041 

q4 0.08004 0.01538 

?, norm 

Function A-1 A-2 A-3 A-4 

max | Ci i (8.5)10 5 (2.0)10 (2.4)105 (9.0)10 5 mx il _ _ _ _ ___ ___._ _,_ _ ._ __ ,..,,___--_._ 

P0 1.00007 0.04712 1.00001 0.99978 

pl 0.50840 0.75196 1.07545 0.10119 

P2 0.08571 -0.23936 0.03246 

P3 0.00961 

q, _-0.49133 -0.63662 1.07717 0.76350 

q2 0.07781 0.00000 0.77790 0.29193 

q3 0.25140 0.04986 

q4 e0.08086 0.01927 
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TABLE 3. Various L2 approximations: Summary 

Loeb's algorithm. Form of approximation: P2(x)/Q2(x) 

Convergence criterion: relative change in each parameter < 10 4 

Define = C(Xi) f(xi) P2(xi)/Q2 (x 

f(x) N Number of 1 . 2? 
Function Domain Number of iterations to (N Ei} 

data points convergence 

C-1. log(l + x) [0,1] 21 3 (1.3)10-6 

C-2. log(x) [.1,1] 10 5 (2.6)10-4 

C-3. /i [0,1] 21 7 (1.3)10-3 

C-4. 3 [0,1] 21 7 (1.5)10- 

C-5. sin(x) [0,3] 21 3 (6.2)10-4 

c-6. sin(x) [-3,3] 21 No 
convergence 

C-7. arc sin(x) [0,1] 11 5 (1.5)10 3 

C-8. arc tan(x) [0,1] 21 4 (4.0)105 

C-9. arc tan(x) [0,10] 21 5 (4.2)104 

C-10. sinh(x) [0,1] 11 4 (3.8)105 

C-li. tanh(x) [0,1] 11 3 (2.4)10 5 

C-12. r(l + x) [0,1] 11 3 (1.1)105 

C-13. log r(l + x) [0,1] 11 3 (1.1)10-5 

C-14. erf(x) [0,2] 11 5 (1.1)10o 

C-15. exp(-x ) [0,2] 11 4 (2.0)10 

C-16. { lx [09 5]} 
2 

1 1 7 (1.4)10-2 

C-17. 4(1x) [ 51 21 7 (5.5)1o2 

functions: Loeb's algorithm was used throughout. Tables 4A and 4B contain four 
approximations by l/(Qn(x))7. Appel's algorithm was used, and results are shown 
for each norm. Table 5 lists the data points used to define each function approxi- 
mated in this study. 

The functions and forms of approximation in Tables 1 and 4 were chosen on 
the basis of previous experience in Mason [5]. The standard functions in Table 3 
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TABLE 4A. Apel's algorithm: Summary 

Domain: 10 ,00) 

Form of approximation: 1 = (qo + q Z +...+ quz ) 
(Q,(x))r 0 

a~~~~~~~ 
Define ei = e(x ) f(x ) - l/(Q*(x )) i i ni 

N 12 2 A 
Function Number of z n r . 

data points 2 ? axlcii 
N ? ~ :sN maii 

D-1. exp(-x) 20 x 4 4 (4.6)10 6 (2.5)10-5 (3.9)105 

D-2. 1 - erf(x) 20 x 5 4 (1.1)10 (5.3)10 (1.0)10 

D-3. Blasius 20 x 5 4 (2.3)10 (1.2)10 (1,6) 104 

D-4. Thomas- 18 x" 6 1 (5.9)10 (7.4)10 (1.0)10 
Fermi 

Note: (i) erf(x) defined by f(x) = w f exp(-t )dt 

(ii) Blasius defined by f(x) = g(x) + 1.7208 - 2x where 

g"' (x) + g(x) g" (x) = 0 with g(0) = g' (0) = 0, g' (oo) = 2 

(iii) D-4. defined same as A-3 (see Table LA). 

were chosen at the suggestion of Mr. I. Farkas. All 11 and 100 results were computed 
in double precision arithmetic on an IBM 360/44 at Victoria; improved versions 
of the linear algorithms given in [3] were used to minimize the quantities (A) and 
(D) in the algorithms of Loeb and Appel, respectively. All 12 results were computed 
in single precision on an IBM 7094 at Toronto; a double precision subroutine (un- 
published) by W. Kahan for linear least-squares approximation was used to minimize 
(A) and (D) in this case. 

We shall finish by making several remarks on particular approximations shown 
in these tables. 

The results in Tables IA and lB give a good indication of how well Loeb's al- 
gorithm can behave in practice. In all cases convergence to the accuracy shown has 
occurred within just a few iterations. For example, in the case A-1 the total time 
required to compute a nonlinear approximation, in any of the three norms, is less 
than five times that which is required to compute a linear approximation with the 
same number of free parameters. The 1lo approximations produced for this paper 
by Loeb's algorithm almost all satisfy the characteristic equioscillation property of 
best approximations, whereas most of the 12 approximations do not satisfy the 
necessary normal equations. (There is no known characterization theorem for 11 
rational approximation.) Each approximation computed in A-3 is certainly of high 
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TABLE 4B. A22ei's algorithm: Parameters 

z norm 
1 

Function D-1 D-2 D-3 D-4 

q0 1.00000 1.00000 0.87311 1.00000 

q1 0.24996 0.28353 0.25443 0.02928 

q2 0.03148 0.18539 0.09369 1.33427 

q3 0.00233 a.11521 0.05685 -0.40641 

q4 0.00026 -0.02907 -0.01018 0.45413 

q5 0.03266 0.01343 -0.06865 

q6 0.01580 

22 norm 

Function D-1 D-2 D-3 D-4 

q0 1.00001 0.99999 0.87310 0.99998 

q1 0.24996 0.28322 0.25470 0.02180 

q2 0.03146 0.18790 0.09168 1.37286 

q3 0.00235 0.10951 0.06145 -0.47086 

q4 0q0.00026 -0.02395 -0.01392 0.49910 

q5 0.03105 0.01440 -0.08176 

q6 0.01705 

2. norm 

Function D-1 D-2 D-3 D-4 

q0 1.00001 0.99998 0.87309 0.99990 

1 o0.24989 0.28372 0.25496 0.02160 

q2 0.03158 0.18423 0.08996 1.37701 

q3 O .00230 0.11837 0.06521 -0.48130 

q4 0.00026 -0.03203 -0.01704 0.50798 

q5 0.03341 0.01526 -0.08453 

q6 0.01730 
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TABLE 5. Definitions of discrete data sets 

Note: In the last column the word "subroutine" indicates that the 
ordinates were generated in a computer subroutine to at least 
7 decimals. 

Function Abscissae Accuracy of 
ordinates 

A-1 -1.0(0.1)1.0 subroutine 

A-2 kw/21 for k = 1(1)20 subroutine 

A-3 0.0,0.05,0.1,0.2,0.45,0.7,0.95,1.2,1.6,2.1, 5 sig. figs. 
2.6,3.2,4.2,5.5,8,11,16,20 

A-4 0.2,0.4,0.6,0.8,0.9,1.0(0.2)2.0,2.5(0.5)6.0,10 4 decimals 

B-1 0.0(0.1)2.0 subroutine 

B-2 -5.0(0.5)5.0 subroutine 

B-3(a) 0.0(0.05)1.0 subroutine 

B-3(b) 0.0P0.2,0.4,0.5,0.6,0.8,1.0 subroutine 

B-4 0.0(0.05)1.0 subroutine 

B-5,B-6 0.0(0.1)2.0 subroutine 

C-1 0.0(0.05)1.0 subroutine 

C-2 0.1(0.1)1.0 subroutine 

C-3,C-4 0.0(0.05)1.0 subroutine 

C-5 0.0(0.15)3.0 subroutine 

C-6 -3.0(0.3)3.0 subroutine 

c-7 0.0(0.1)1.0 subroutine 

C-8 0.0(0.05)1.0 subroutine 

C-9 0.0(0.5)10.0 subroutine 

C-10,C-1l,C-12,C-13 0.0(0.1)1.0 subroutine 

C-14,C-15 0.0(0.2)2.0 subroutine 

C-16,C-17 0.0(0.05)1.0 subroutine 

D-1 0.0(0.1)0.6,0.8,1.0,1.2,1.6,2.0,2.5,3.0, 4 decimals 
3.5,4,5,6,7,9 

D-2 0.0(0.1)1.0,1.2(0.2)2.8 4 decimals 

D-3 0.0(0.1)0.6,0.8(0.2)3.0,3.4 4 decimals 

D-4 same as A-3 5 sig. figs. 
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accuracy. Note that in the case A-2 all three approximations reproduce the pole at 
x = 7r/2 to an accuracy of at least four decimal places. 

The examples in Tables 2A and 2B provide a more severe test for Loeb's algorithm. 
In the 12 norm, convergence does not always occur to the desired accuracy within 
twenty-five iterations; nevertheless the convergence rates in this norm are quite 
satisfactory both here and in Table 3. It can be seen that in the 1 and 1. norms the 
results are far from satisfactory. In both cases there are examples shown where no 
sign of convergence is evident within the first twenty-five iterations. From further 
tests performed on these examples, we can report that this behavior usually persists 
after fifty or more iterations and appears to be independent of the starting value Q(O). 
A more definite trend is established in B-3(a) for the lc, norm and B-5 for the 11 norm, 
where in both examples the algorithm oscillates between two good approximations. 

The special nature of the given functions in B-3 and B-4 causes Loeb's algorithm 
to break down almost completely in the 1 and 1 norms. The functions which are 
approximated are pairs of constant functions, and here there is a tendency for Loeb's 
algorithm to produce successive approximations which possess poles in the interval 
of interest. If they occur close to abscissae from the discrete point set, these poles 
may have a disruptive effect on the sequence of approximations, since the successive 
weight functions then attain very large values. In particular, consider the case B-3(a). 
Since f(x) = 1 for almost half the points, and in each iteration the weighted quantity 
I IfQ - PIj is minimized, a reasonable strategy for the algorithm is to set P _ Q 
and minimize I IQII over the remaining points. In the 1 norm this is particularly 
appropriate since a best approximation tends to interpolate as many points of the 
given function as possible. Moreover, with interpolation at just three points where 
f(x) = 1, it follows that the quadratics P and Q must be identically equal. The problem 
then reduces to minimizing the quantity IIQ II, and this minimum is achieved by a 
function which varies very little from the quadratic Chebyshev polynomial of the 
second kind for the interval [.5, 1]. Therefore, Q has two roots, and the approximation 
thus produced has two poles, in this interval. In the next iteration this weight function 
causes P and Q to coincide on (.5, 1], thus producing a new approximation with 
poles in [0, .5). The algorithm is thus continually thrown off track and often fails 
to converge. This argument can also be applied in the l. norm, where there is a good 
possibility that the characteristic equioscillation property of the curve (fQ - P) 
will occur at least four times when f(x) - 1. This implies that (Q - P) has at least 
three zeros and hence, Q P. The optimum choice for Q in this norm is a function 
closely resembling the quadratic Chebyshev polynomial of the first kind, and again 
poles appear in the interval of interest. The algorithm seems able to avoid these 
pitfalls in the 12 norm; this is possibly due to the less stereotyped behavior of best 
approximations in this norm. 

Further disturbing results are B-3(b) for the 14 norm and B-4 for the l. norm. 
Here, in both cases Loeb's algorithm converges to approximations which are definitely 
not best approximations. The rational function produced in B-3(b) has an error of 
approximation that is almost optimal, and in fact there are two distinct best 11 ap- 
proximations for this problem. (This case was previously reported in [2] and some 
further details can be found therein.) The function produced for B-4 is a poor 4. 
approximation, being almost zero everywhere except around two poles enclosing 
the point x = 0.85. 
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Tables 1, 2, and 3 together emphasize the fact that Loeb's algorithm almost 
always seems to converge in the 12 norm. We feel therefore that the user would be 
well advised to avoid the 11 and L0 norms in those instances where the choice of norm 
is unimportant. Even the failure to converge in the 12 example C-6 is not too dis- 
turbing, since the even function P2(x)/Q2(x) is obviously an inappropriate choice 
of approximating form for the odd function f(x) = sin x on [-3, 3]. 

Tables 4A and 4B clearly demonstrate that Appel's algorithm can provide very 
accurate approximations. The assumption inherent in this method, that the error 
of approximation E(x) at any discrete point be small compared to the given function 
f(x), may not be too restrictive in practice. Indeed, in some applications of the al- 
gorithm this assumption has been violated and yet good approximations have still 
been produced. However, in the case D-4 we originally included two extra data 
points with small ordinates, and here Appel's algorithm produced approximations 
far less satisfactory than those shown. A technique which can accommodate situa- 
tions like this, where the error of approximation E(x) is too large at some points, is 
to introduce an additional weight function that reduces E(x) on these critical points. 
The choice of an appropriate additional weight function is discussed in Mason [5]. 

6. Summary. Loeb's algorithm is simple to implement, and it often converges 
in just a few iterations. Sometimes, however, it does not converge at all, and, even 
when it does converge, there is no guarantee that convergence is to a best approxi- 
mation. In spite of these weaknesses the algorithm will often produce quite satisfactory 
rational approximations, particularly in the 12 norm. 

Appel's algorithm requires only one application of a linear algorithm, it computes 
near-best approximations, and it appears to be reliable and capable of producing 
very accurate results. 

Acknowledgments. It is a pleasure to acknowledge the extensive programming 
done by Mr. I. Farkas of Toronto and Mr. K. B. Wilson of Victoria in connection 
with this paper. We should also like to thank Mr. Farkas for drawing our attention 
to the paper by Wittmeyer. The financial assistance provided by the National Research 
Council of Canada and the Department of University Affairs of Ontario is also 
gratefully acknowledged. 

Department of Mathematics 
University of Victoria 
Victoria, British Columbia 
Canada 

Department of Computer Science 
University of Toronto 
Toronto, Ontario 
Canada 

1. K. APPEL, "Rational approximation of decay-type functions," Nordisk Tidskr. Inforna- 
tionsbehandling, v. 2, 1962, pp. 69-75. 

2. I. BARRODALE, "On computing best L1 approximations," Approximation Theory, edited by 
A. Talbot, Academic Press, London, 1970, pp. 205-215. 



ALGORITHMS FOR DISCRETE RATIONAL APPROXIMATION 891 

3. I. BARRODALE & A. YOUNG, "Algorithms for best L1 and L,, linear approximations on a 
discrete set," Numer. Math., v. 8, 1966, pp. 295-306. MR 33 #5096. 

4. H. L. LOEB, On Rational Fraction Approximations at Discrete Points, Convair Astronautics, 
Math. Preprint #9, 1957. 

5. J. C. MASON, Some New Approximations for the Solution of Differential Equations, Doctoral 
Thesis, Oxford, 1965. 

6. J. R. RICE, The Approximation of Functions. Vol. 2, Addison-Wesley, Reading, Mass., 1969. 
7. J. R. RICE & J. S. WHITE, "Norms for smoothing and estimation," SIAM Rev., v. 6, 1964, 

pp. 243-256. MR 29, #5334. 
8. L. WITTMEYER, "Rational approximation of empirical functions," Nordisk Tidskr. Informa- 

tionsbehandling, v. 2, 1962, pp. 53-60. 


